塑料的超声波焊接性能和兼容性
时间:2020-01-18 浏览:
塑料
塑料分为热固性塑料和热塑性塑料。热固性塑料可塑但不可逆。第一次加热时可熔化流动,加热到一定温度,产生化学反应,交联固化变硬而形成固体;但这种变化时不可逆的,当重新受热加压时,热固性塑料不能再次熔化。因此,超声波焊接不能焊接热固性塑料。热塑性塑料可塑又可逆;当第一加热形成固体后,其内部结构仅经历形态的变化,是可逆的;重新加热和加压时,能够重新熔化并再次形成固体。超声波焊接能够焊接大部分的热塑性塑料。
热塑性塑料又分为无定形塑料和半结晶塑料,由于二者的分子结构和排布不同,二者的超声波焊接性能又有所差别。
无定形塑料的分子结构呈随机分布,没有一个明确的熔点Tm,其在一个很广泛的温度范围内逐步软化、熔化和流动;而不是一旦加热到某个温度就立即从固体熔化,然后又立即固化。无定形塑料这种特性非常易于传导超声波振动能力,能够在较大的压力和振幅范围内进行超声波焊接。
半结晶塑料的分子结构在局部呈规律性分布,有一个明确的熔点Tm,在温度达到熔点之前,半结晶塑料始终保持着固态;当温度达到熔点后,整个分子链立刻开始运动,并立即固化。无定形塑料和半结晶塑料的熔化过程区别如图所示。
(无定形塑料和半结晶塑料的熔化过程)
半结晶塑料呈规律性分布的分子结构类似于弹簧,非常容易吸收高频的超声波振动能量,使得能量很难从焊头传导到焊接界面,必须有足够大的超声波能量才能使得半结晶塑料熔化。因此,相对于无定形塑料,半结晶塑料比较难焊接。为了使得半结晶塑料获得较高的焊接质量,往往需要考虑更多的因素,例如,较高的振幅、合适的焊接界面设计、焊头的接触、焊接的距离以及焊接夹具等。
无定形塑料和半结晶塑料的超声波焊接难易程度如表2所示。
塑料之间的超声波焊接兼容性
两种塑料能够焊接兼容,必须在化学上兼容,否则,尽管两种塑料熔合在一起,但没有分子键的结合,焊接强度会非常低。一个典型的例子是PE与PP的焊接。两种塑料都是半结晶塑料,有着相似的外观和相似的物理性能,但它们不能在化学上兼容,因此它们不能焊接在一起。
热塑性塑料能够与自身焊接在一起。例如,一个ABS的零件能够与另外一个ABS的零件焊接在一起;不同的塑料能够焊接在一起取决于两个因素;其一是它们的熔化温度很接近,在22°以内;如果熔化温度相差很大,一种塑料已经开始分解了,另一种塑料才开始熔化,两种塑料自然无法焊接在一起。其二是相似的分子结构。例如,ABS零件能够与Acrylic零件进行焊接是因为它们的化学属性是兼容的。一般来说,只有相似的无定形塑料才有机会彼此焊接在一起,而半结晶塑料的化学属性相差很大,它们基本上不能互相焊接在一起。
值得注意的是,即使是同一种塑料之间的超声波焊接,应该使用来自同一家供应商的同一种型号材料,否则也有可能产生焊接质量问题。
如图所示显示了常见塑料的焊接兼容性。